部分信息借由 GPT 进行脱敏处理
现有一个简单表结构:
Table "schema.t_table_m"
Column | Type | Modifiers | Storage | Stats target | Description
-----------------+-----------------------------+------------------------------------------+----------+--------------+-------------
partition_id | smallint | not null | plain | | 分区 ID
transaction_time| timestamp without time zone | not null default pg_systimestamp() | plain | | 交易时间
transaction_count | integer | | plain | | 交易数量
last_update_time | timestamp without time zone | not null default pg_systimestamp() | plain | | 更新时间
source_type | character varying(10) | not null default NULL::character varying | extended | | 事件源
transaction_code | character varying(30) | not null default NULL::character varying | extended | | 交易码
key_value | character varying(100) | not null default NULL::character varying | extended | | RV 变量键
value_data | character varying(500) | not null default NULL::character varying | extended | | RV 变量值
Indexes:
"t_table_m_pkey" PRIMARY KEY, ubtree (transaction_time, value_data, key_value, transaction_code, source_type, partition_id) LOCAL WITH (storage_type=USTORE, active_pages=1314323) TABLESPACE pg_default
Partition By LIST(partition_id)
Number of partitions: 31 (View pg_partition to check each partition range.)
Has OIDs: no
Options: orientation=row, compression=no, storage_type=USTORE, segment=off
表由 Mysql 迁移而来,这个分区表中存储的记录条数为 126000000+。在开发侧,他们反馈下面的一个简单查询执行性能非常差,每条 SQL 要跑 15s 左右:
SELECT
value_data AS dataValue,
SUM(transaction_count) AS txnCount
FROM
schema.t_table_m
WHERE
1 = 1
AND source_type = '1'
AND key_value IN (
'key1',
'key2',
'key3',
'key4',
'key5',
'key6',
'key7',
'key8',
'key9',
'key10'
)
AND partition_id IN (1, 31)
AND transaction_time >= '2024-07-31 15:58:11'
AND transaction_time <= '2024-08-01 15:58:11'
AND value_data NOT IN ('null','space','#','*')
AND transaction_code NOT IN ('code1', 'code2')
GROUP BY
value_data;
执行计划如下:
postgres=> explain performance
SELECT
.......;
id | operation | A-time | A-rows | E-rows | E-distinct | Peak Memory | A-width | E-width | E-costs
----+------------------------------------------------------------------------------------------------+-----------+--------+--------+------------+-------------+---------+---------+----------------
1 | -> HashAggregate | 12715.021 | 0 | 1 | | 22KB | | 8 | 28.485..28.495
2 | -> Partition Iterator | 12715.011 | 0 | 1 | | 69KB | | 8 | 0.010..28.480
3 | -> Partitioned Index Scan using t_table_m_pkey on schema.t_table_m | 12714.903 | 0 | 1 | | 29KB | | 8 | 0.010..28.480
(3 rows)
Predicate Information (identified by plan id)
------------------------------------------------------------------------------------------
2 --Partition Iterator
Iterations: 2
3 --Partitioned Index Scan using t_table_m_pkey on schema.t_table_m
Index Cond: ((schema.t_table_m.transaction_time >= '2024-07-31 15:58:11'::timestamp without time zone) AND (schema.t_table_m.transaction_time <= '2024-08-01 15:58:11'::timestamp without time zone) AND ((schema.t_table_m.key_value)::text = ANY ('{key1,key2,key3,key4,key5,key6,key7,key8,key9,key10}'::text[])) AND ((schema.t_table_m.source_type)::text = '1'::text) AND (schema.t_table_m.partition_id = ANY ('{1,31}'::integer[])))
Filter: (((schema.t_table_m.transaction_code)::text <> 'code1'::text) AND ((schema.t_table_m.transaction_code)::text <> 'code2'::text) AND ((schema.t_table_m.value_data)::text <> ALL ('{"null",space,#,*}'::text[])))
Selected Partitions: 1,31
(6 rows)
Memory Information (identified by plan id)
------------------------------------------------------------------------------------------
1 --HashAggregate
Peak Memory: 22KB, Estimate Memory: 32MB
2 --Partition Iterator
Peak Memory: 69KB, Estimate Memory: 32MB
3 --Partitioned Index Scan using t_table_m_pkey on schema.t_table_m
Peak Memory: 29KB, Estimate Memory: 32MB
(6 rows)
Targetlist Information (identified by plan id)
--------------------------------------------------------------------------------------------
1 --HashAggregate
Output: value_data, sum(transaction_count)
Group By Key: schema.t_table_m.value_data
2 --Partition Iterator
Output: value_data, transaction_count
3 --Partitioned Index Scan using t_table_m_pkey on schema.t_table_m
Output: value_data, transaction_count
(7 rows)
Datanode Information (identified by plan id)
--------------------------------------------------------------------------------------------
1 --HashAggregate
(actual time=12715.021..12715.021 rows=0 loops=1)
(Buffers: shared hit=760703)
(CPU: ex c/r=0, ex row=0, ex cyc=437, inc cyc=847446039235951)
2 --Partition Iterator
(actual time=12715.011..12715.011 rows=0 loops=1)
(CPU: ex c/r=0, ex row=0, ex cyc=-847446039224001, inc cyc=847446039235514)
3 --Partitioned Index Scan using t_table_m_pkey on schema.t_table_m
(actual time=12714.903..12714.903 rows=0 loops=2)
(Buffers: shared hit=760703)
(CPU: ex c/r=0, ex row=0, ex cyc=1694892078459515, inc cyc=1694892078459515)
(11 rows)
====== Query Summary =====
------------------------------------------
Datanode executor start time: 0.177 ms
Datanode executor run time: 12715.042 ms
Datanode executor end time: 0.021 ms
Planner runtime: 1.124 ms
Query Id: 10810046480632471817
Total runtime: 12715.260 ms
(6 rows)
其中所有涉及列都已经命中索引扫描,测试时尝试更改某些 where 条件使得查询进行全表扫描的话,执行时间会暴增到 2 分钟左右。
经由我们多轮调试后,发现仅仅是单纯地将 where 条件中partition_id IN (1, 31)
更改为(partition_id=31 OR partition_id=1)
,就能使得查询平均耗时减少到 6s 。其它优化更改的效果低于系统性能波动,无法观测。
原本猜测是因为 IN 语句改写后会触发分区剪枝类的优化,但是经对比发现改写前后的执行计划完全一致:
postgres=> explain performance
SELECT
value_data AS dataValue,
SUM(transaction_count) AS txnCount
FROM
schema.t_table_m
WHERE
1 = 1
AND source_type = '1'
AND key_value = any (array[
'key1',
'key2',
'key3',
'key4',
'key5',
'key6',
'key7',
'key8',
'key9',
'key10'
])
AND (partition_id = 1 OR partition_id = 31)
AND transaction_time >= '2024-07-31 15:58:11'
AND transaction_time <= '2024-08-01 15:58:11'
AND value_data not in ('null','space','#','*')
AND transaction_code <> 'code1'
AND transaction_code <> 'code2'
GROUP BY
value_data;
id | operation | A-time | A-rows | E-rows | E-distinct | Peak Memory | A-width | E-width | E-costs
----+------------------------------------------------------------------------------------------------+-----------+--------+--------+------------+-------------+---------+---------+----------------
1 | -> HashAggregate | 6421.454 | 0 | 1 | | 22KB | | 8 | 14.790..14.800
2 | -> Partition Iterator | 6421.441 | 0 | 1 | | 69KB | | 8 | 0.010..14.785
3 | -> Partitioned Index Scan using t_table_m_pkey on schema.t_table_m | 6421.276 | 0 | 1 | | 31KB | | 8 | 0.010..14.785
(3 rows)
Predicate Information (identified by plan id)
-----------------------------------------------------------------------------------------
2 --Partition Iterator
Iterations: 2
3 --Partitioned Index Scan using t_table_m_pkey on schema.t_table_m
Index Cond: ((schema.t_table_m.transaction_time >= '2024-07-31 15:58:11'::timestamp without time zone) AND (schema.t_table_m.transaction_time <= '2024-08-01 15:58:11'::timestamp without time zone) AND ((schema.t_table_m.key_value)::text = ANY ('{key1,key2,key3,key4,key5,key6,key7,key8,key9,key10}'::text[])) AND ((schema.t_table_m.source_type)::text = '1'::text))
Filter: (((schema.t_table_m.transaction_code)::text <> 'code1'::text) AND ((schema.t_table_m.transaction_code)::text <> 'code2'::text) AND ((schema.t_table_m.partition_id = 31) OR (schema.t_table_m.partition_id = 1)) AND ((schema.t_table_m.value_data)::text <> ALL ('{"null",space,#,*}'::text[])))
Selected Partitions: 1,31
(6 rows)
Memory Information (identified by plan id)
------------------------------------------------------------------------------------------
1 --HashAggregate
Peak Memory: 22KB, Estimate Memory: 32MB
2 --Partition Iterator
Peak Memory: 69KB, Estimate Memory: 32MB
3 --Partitioned Index Scan using t_table_m_pkey on schema.t_table_m
Peak Memory: 31KB, Estimate Memory: 32MB
(6 rows)
Targetlist Information (identified by plan id)
--------------------------------------------------------------------------------------------
1 --HashAggregate
Output: value_data, sum(transaction_count)
Group By Key: schema.t_table_m.value_data
2 --Partition Iterator
Output: value_data, transaction_count
3 --Partitioned Index Scan using t_table_m_pkey on schema.t_table_m
Output: value_data, transaction_count
(7 rows)
Datanode Information (identified by plan id)
--------------------------------------------------------------------------------------------
1 --HashAggregate
(actual time=6421.454..6421.454 rows=0 loops=1)
(Buffers: shared hit=380353)
(CPU: ex c/r=0, ex row=0, ex cyc=488, inc cyc=847433445353297)
2 --Partition Iterator
(actual time=6421.441..6421.441 rows=0 loops=1)
(CPU: ex c/r=0, ex row=0, ex cyc=-847433445336080, inc cyc=847433445352809)
3 --Partitioned Index Scan using t_table_m_pkey on schema.t_table_m
(actual time=6421.276..6421.276 rows=0 loops=2)
(Buffers: shared hit=380353)
(CPU: ex c/r=0, ex row=0, ex cyc=1694866890688889, inc cyc=1694866890688889)
(11 rows)
====== Query Summary =====
-----------------------------------------
Datanode executor start time: 0.198 ms
Datanode executor run time: 6421.479 ms
Datanode executor end time: 0.022 ms
Planner runtime: 1.417 ms
Query Id: 10810046480632413864
Total runtime: 6421.729 ms
(6 rows)
两者唯一的区别是,在 Partitioned Index Scan 时,使用 OR 的语句 Buffers: shared hit 是使用 IN 的一半。
其中造成这样的差距的可能原因是什么?
1
967182 101 天前
GPT 这样说: 从描述和执行计划中可以看出,使用 IN 与使用 OR 的主要区别在于访问缓冲区( Buffers )的行为不同。使用 OR 时,缓冲区的共享命中率只有使用 IN 的一半。这意味着在使用 OR 时,查询过程中的缓存利用效率更高,从而导致查询执行时间较短。
以下是可能导致这种差异的原因: 缓存使用效率:IN 操作符通常会转换成多个条件的 OR 表达式,这可能会增加某些情况下的缓存失效或增加磁盘 IO 。 执行计划差异:尽管在高层次上执行计划看似相同,但在某些底层细节上,优化器可能会对 IN 和 OR 进行不同的处理,导致资源使用的不同。 执行路径:OR 和 IN 在某些数据库系统中的处理路径可能不同,导致数据扫描和缓存的差异。 总的来说,具体的原因可能是数据库在处理 IN 操作符时,在分区剪枝和索引扫描的优化方面没有完全优化,或者在使用 OR 时,查询路径更为直接,减少了缓存未命中的情况,从而使查询执行得更快。 |
2
mark2025 101 天前
考虑在 transaction_time 上面创建 BRIN 索引(不是 btree )
|
3
ShuA1 101 天前
建议将 transaction_time 保存为时间戳,bigint 的对比速度会快很多。 你这里是日期,会存在隐式转换为时间戳的问题。
另外我看 source_type 字段也是 text 类型, 也可以更换为 int4 。 建议你用 explain analyze 进行分析,找出慢的地方,performance 更多是对资源消耗的分析。 |
4
MoYi123 101 天前
优化器没写好呗, 能报 bug 的话就报一下, 这种应该很好修.
|