#!/usr/bin/env bash
# clone repo and install dependences
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
make
python -m pip install torch numpy sentencepiece
# download 7B model
mkdir -p models/7B/
wget -P models/7B/ https://huggingface.co/nyanko7/LLaMA-7B/resolve/main/consolidated.00.pth
wget -P models/7B/ https://huggingface.co/nyanko7/LLaMA-7B/raw/main/params.json
wget -P models/7B/ https://huggingface.co/nyanko7/LLaMA-7B/raw/main/checklist.chk
wget -P models/ https://huggingface.co/nyanko7/LLaMA-7B/resolve/main/tokenizer.model
# converts the model to "ggml FP16 format"
python convert-pth-to-ggml.py models/7B/ 1
# quantizes the model to 4-bits
./quantize ./models/7B/ggml-model-f16.bin ./models/7B/ggml-model-q4_0.bin 2
# enjoy
./main -m ./models/7B/ggml-model-q4_0.bin \
-t 8 \
-n 128 \
-p 'I Have a Dream'
目前已知的模型有:
每个模型的内存占用空间大小约为 4GB
,根据自己机器内存大小选择合适的模型
Meta 并没有公开模型的 hash 值,所以请自行判断是否要运行 目前已知的泄漏地址有以下几个:
有人在官方库上故意不小心提交了模型的磁力链接
magnet:?xt=urn:btih:ZXXDAUWYLRUXXBHUYEMS6Q5CE5WA3LVA&dn=LLaMA
new bing 找到的库,里面用的好像是作者自己的 API 接口
curl -o- https://raw.githubusercontent.com/shawwn/llama-dl/56f50b96072f42fb2520b1ad5a1d6ef30351f23c/llama.sh | bash
或者通过磁力链接
magnet:?xt=urn:btih:b8287ebfa04f879b048d4d4404108cf3e8014352&dn=LLaMA&tr=udp%3a%2f%2ftracker.opentrackr.org%3a1337%2fannounce
目前找到的只有 7B 和 65B 的模型
https://huggingface.co/nyanko7/LLaMA-7B/tree/main
https://huggingface.co/datasets/nyanko7/LLaMA-65B/tree/main
笔者机器硬件是 Apple M1 8-core 16GB RAM
系统版本是 12.5.1
clang 版本如下
❯ c++ -v
Apple clang version 14.0.0 (clang-1400.0.29.102)
Target: arm64-apple-darwin21.6.0
Thread model: posix
InstalledDir: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin
Python 目前是基于 3.10 版本
如果没有对应的 python 版本,可以通过 pipenv 或者 conda 创建一个虚拟环境出来
pipenv shell --python 3.10
或者
conda create -n llama python=3.10
conda activate llama
安装依赖
pip install torch numpy sentencepiece
拉取项目
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
编译出 main
和 quantize
make
确保模型已经下载到对应的文件夹内
下面以 7B 模型举例子
ls ./models
7B
tokenizer.model
将模型转换为 ggml FP16 格式
python convert-pth-to-ggml.py models/7B/ 1
这一步会生成一个 13GB 的 models/7B/ggml-model-f16.bin
文件
下一步将模型量化为 4-bit
./quantize ./models/7B/ggml-model-f16.bin ./models/7B/ggml-model-q4_0.bin 2
如果你的模型数量有多个,需要分批次来处理
比如 13B 的两个模型文件
./quantize ./models/13B/ggml-model-f16.bin ./models/13B/ggml-model-q4_0.bin 2
./quantize ./models/13B/ggml-model-f16.bin.1 ./models/13B/ggml-model-q4_0.bin.1 2
笔者用的是 13B 模型,-t 是线程数量,-n 是 token 数量 , -p 是你输入的内容
❯ ./main -m models/13B/ggml-model-q4_0.bin -t 8 -n 409600 -p 'I Have a Dream'
main: seed = 1678677633
llama_model_load: loading model from 'models/13B/ggml-model-q4_0.bin' - please wait ...
llama_model_load: n_vocab = 32000
llama_model_load: n_ctx = 512
llama_model_load: n_embd = 5120
llama_model_load: n_mult = 256
llama_model_load: n_head = 40
llama_model_load: n_layer = 40
llama_model_load: n_rot = 128
llama_model_load: f16 = 2
llama_model_load: n_ff = 13824
llama_model_load: n_parts = 2
llama_model_load: ggml ctx size = 8559.49 MB
llama_model_load: memory_size = 800.00 MB, n_mem = 20480
llama_model_load: loading model part 1/2 from 'models/13B/ggml-model-q4_0.bin'
llama_model_load: ............................................. done
llama_model_load: model size = 3880.49 MB / num tensors = 363
llama_model_load: loading model part 2/2 from 'models/13B/ggml-model-q4_0.bin.1'
llama_model_load: ............................................. done
llama_model_load: model size = 3880.49 MB / num tensors = 363
main: prompt: 'I Have a Dream'
main: number of tokens in prompt = 5
1 -> ''
29902 -> 'I'
6975 -> ' Have'
263 -> ' a'
16814 -> ' Dream'
sampling parameters: temp = 0.800000, top_k = 40, top_p = 0.950000, repeat_last_n = 64, repeat_penalty = 1.300000
I Have a Dream: A Handbook for Teachers and Students on Martin Luther King, Jr.
Culture is always changing and being influenced by the people around us who we can observe. Ways of thinking about culture are more important than which one you believe in because it could be dangerous if your way off believing in something that isn’t true but also that means there will be changes over time so everyone should learn these things when they start school
Added: Sun, April 29th 2018 [end of text]
main: mem per token = 22439492 bytes
main: load time = 4974.55 ms
main: sample time = 300.81 ms
main: predict time = 90728.84 ms / 824.81 ms per token
main: total time = 98585.49 ms
Running LLaMA 7B and 13B on a 64GB M2 MacBook Pro with llama.cpp
1
NealLason 2023-03-21 14:09:30 +08:00
7B 模型的中文支持简直像智障。。
|